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Abstract. In this paper, we calculate the stress-energy tensor for a quantized massless conformally coupled
scalar field with a background of conformally flat brane-world geometries, where the scalar field satisfies
Robin boundary conditions on two parallel plates. In the general case of Robin boundary conditions formulae
are derived for the vacuum expectation values of the energy-momentum tensor. Further the surface energy
per unit area is obtained. As an application of the general formulae we have considered the important
special case of the AdS4+1 bulk; moreover the application to the Randall–Sundrum scenario is discussed.
In this specific example for a certain choice of Robin coefficients, one could make the effective cosmological
constant vanish.

1 Introduction

The cosmological constant was first introduced by Ein-
stein in order to justify the equilibrium of a static universe
against its own gravitational attraction. The discovery of
Hubble that the universe may be expanding led Einstein
to abandon the idea of a static universe and, along with
it, the cosmological constant. However, the Einstein static
universe remained of interest to theoreticians since it pro-
vided a useful model to achieve better understanding of the
interplay of spacetime curvature and of quantum field the-
oretic effects. The recent years have witnessed a resurgence
of interest in the possibility that a positive cosmological
constant Λ may dominate the total energy density in the
universe [1–3]. At a theoretical level Λ is predicted to arise
out of the zero-point quantum vacuum fluctuations of the
fundamental quantum fields. Using parameters arising in
the electroweak theory results in a value of the vacuum
energy density ρvac = 106 GeV4 which is almost 1053 times
larger than the current observational upper limit on Λ
which is 10−47 GeV4 ∼ 10−29 g/cm3. On the other hand
the QCD vacuum is expected to generate a cosmological
constant of the order of 10−3 GeV4 which is many orders of
magnitude larger than the observed value. This is known
as the old cosmological constant problem. The new cosmo-
logical problem is to understand why ρvac is not only small
but also, as the current observations seem to indicate, is of
the same order of magnitude as the present mass density
of the universe.

In recent years, there has been hope to understand
the vanishing cosmological constant in extra dimensional
theories [4–15]. It is generally believed that fine-tuning
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is necessary for a very small cosmological constant in 4-
dimensional theories [16–18]. This leads one to search for
a naturally small cosmological constant in higher dimen-
sional theories. However, for the usual compactification of
a higher dimensional theory to an effective 4-dimensional
theory, one ends up with a normal 4-dimensional theory,
and the fine-tuning problem generically reappears. This is
the case for the usual Kaluza–Klein (KK) compactifica-
tion, and for the generic compactification with large extra
dimension [19]. The Randall–Sundrum (RS) model [19]
provides the hope of avoiding this pathology. This higher
dimensional scenario is based on a non-factorizable geom-
etry which accounts for the ratio between the Planck scale
and weak scales without the need to introduce a large
hierarchy between the fundamental Planck scale and the
compactification scale. The model consists of a spacetime
with a single S1/Z2 orbifold extra dimension. Three-branes
with opposite tensions reside at the orbifold fixed points,
and together with a finely tuned negative bulk cosmological
constant serve as sources for 5-dimensional gravity.

In the present paper we will investigate the vacuum
expectation values of the energy-momentum tensor of the
conformally coupled scalar field with a background of con-
formally flat brane-world geometries. We will consider the
general plane-symmetric solutions of the gravitational field
equations and boundary conditions of the Robin type on
the branes. The latter includes the Dirichlet and Neumann
boundary conditions as special cases. The Casimir energy-
momentum tensor for these geometries can be generated
from the corresponding flat spacetime results by using the
standard transformation formula [20, 21]. Previously this
method has been used in [20] to derive the vacuum stress
on parallel plates for a scalar field with Dirichlet boundary
conditions in de Sitter spacetime and in [21] to investigate
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the vacuum characteristics of the Casimir configuration on
a background of conformally flat brane-world geometries
for a massless scalar field with Robin boundary conditions
on plates. Also this method has been used in [22] to derive
the vacuum characteristics of the Casimir configuration on
a background of static domain wall geometry for a scalar
field with Dirichlet boundary condition on plates (for in-
vestigations of the Casimir energy in brane-world mod-
els with dS branes, see [23–28]). For Neumann or more
general mixed boundary conditions we need to have the
Casimir energy-momentum tensor for the flat spacetime
counterpart in the case of the Robin boundary conditions
with coefficients related to the metric components of the
brane-world geometry and the boundary mass terms. The
Casimir effect for the generalRobin boundary conditions on
a background of the Minkowski spacetime was investigated
in [29] for flat boundaries, and in [30, 31] for spherically
and cylindrically symmetric boundaries in the case of a
general conformal coupling (for Robin-type conditions see
also [32, 33])1. Here we use the results of [29] to generate
the vacuum energy-momentum tensor for plane-symmetric
conformally flat backgrounds; in the Sect. 2 we review this
work briefly. Further in Sect. 3 the surface energy per unit
area which is located on the branes is obtained. This surface
term is zero for Dirichlet or Neumann boundary conditions
but yields a non-vanishing contribution for Robin bound-
ary conditions. In the general case (general coupling), the
stress-energy tensor diverges close to the branes.Thiswould
also be expected in the conformal case if the branes are
curved [34]. In Sect. 4 the important special case of an AdS
background is considered, and we obtain an explicit re-
lation between the cosmological constant of the AdS4+1
bulk and the brane tension (which is the surface energy
per unit area located on the branes). Next, the application
to the Randall–Sundrum is discussed. Finally, the results
are listed and discussed in the last section.

2 Vacuum expectation values
for the energy-momentum tensor

In this paper we will consider a conformally coupled mass-
less scalar field ϕ(x) satisfying the equation

(∇µ∇µ + ξR)ϕ(x) = 0 , ξ =
D − 1
4D

, (1)

with a background of a D+1-dimensional conformally flat
plane-symmetric spacetime with the metric

gµν = e−2σ(z)ηµν , µ, ν = 0, 1, . . . , D . (2)

In (1) ∇µ is the operator of the covariant derivative, and
R is the Ricci scalar for the metric gµν . Note that for the
metric tensor from (2) one has

R = De2σ
[
2σ′′ − (D − 1)σ′2] , (3)

1 Further developments in the Casimir effect can be found
in [35].

where the prime corresponds to differentiation with respect
to z.

We will assume that the field satisfies the mixed bound-
ary condition

(aj + bjn
µ∇µ)ϕ(x) = 0 , z = zj , j = 1, 2 , (4)

on the hypersurfaces z = z1 and z = z2, z1 < z2; nµ

is the normal to these surfaces, nµn
µ = −1, and aj , bj

are constants. The results in the following will depend on
the ratio of these coefficients only. However, to keep the
transition to the Dirichlet and Neumann cases transparent
we will use the form (4). For the case of the plane boundaries
under consideration, introducing a new coordinate y in
accordance with

dy = e−σdz , (5)

the conditions (4) take the form
(
aj + (−1)j−1bjeσ(zj)∂z

)
ϕ(x) (6)

=
(
aj + (−1)j−1bj∂y

)
ϕ(x) = 0 , y = yj , j = 1, 2 .

Note that the Dirichlet and Neumann boundary condi-
tions are obtained from (4) as special cases corresponding
to (aj , bj) = (1, 0) and (aj , bj) = (0, 1) respectively. Our
main interest in the present paper is to investigate the vac-
uum expectation values (VEV’s) of the energy-momentum
tensor for the fieldϕ(x) in the region z1 < z < z2. The pres-
ence of boundaries modifies the spectrum of the zero-point
fluctuations compared to the case without boundaries. This
results in the shift in the VEV’s of the physical quantities,
such as vacuum energy density and stresses. This is the
well-known Casimir effect.

It can be shown that for a conformally coupled scalar by
using the field equation (1) the expression for the energy-
momentum tensor can be presented in the form [36]

Tµν = ∇µϕ∇νϕ− ξ

[
gµν

D − 1
∇ρ∇ρ + ∇µ∇ν +Rµν

]
ϕ2 ,

(7)
where Rµν is the Ricci tensor. The quantization of a scalar
field on a background of metric (2) is standard. Let {ϕα(x),
ϕ∗

α(x)} be a complete set of orthonormalized positive and
negative frequency solutions to the field equation (1), obey-
ing the boundary condition (4). By expanding the field op-
erator over these eigenfunctions, using the standard com-
mutation rules and the definition of the vacuum state for
the vacuum expectation values of the energy-momentum
tensor one obtains

〈0|Tµν(x)|0〉 =
∑
α

Tµν{ϕα, ϕ
∗
α} , (8)

where |0〉 is the amplitude for the corresponding vacuum
state, and the bilinear form Tµν{ϕ,ψ} on the right is deter-
mined by the classical energy-momentum tensor (7). In the
problem under consideration we have a conformally trivial
situation: a conformally invariant field on a background of
conformally flat spacetime. Instead of evaluating (8) di-
rectly on the background of the curved metric, the vacuum
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expectation values can be obtained from the correspond-
ing flat spacetime results for a scalar field ϕ̄ by using the
conformal properties of the problem under consideration.
Under the conformal transformation gµν = Ω2ηµν the ϕ̄
field will change by the rule

ϕ(x) = Ω(1−D)/2ϕ̄(x) , (9)

where for the metric (2) the conformal factor is given by
Ω = e−σ(z). The boundary conditions for the field ϕ̄(x) we
will write in a form similar to (6):

(
āj + (−1)j−1b̄j∂z

)
ϕ̄ = 0 , z = zj , j = 1, 2 , (10)

with constant Robin coefficients āj and b̄j . Comparing to
the boundary conditions (4) and taking into account the
transformation rule (9) we obtain the following relations
between the corresponding Robin coefficients:

āj = aj + (−1)j−1D − 1
2

σ′(zj)eσ(zj)bj , b̄j = bjeσ(zj) .

(11)
Note that as the Dirichlet boundary conditions are confor-
mally invariant the Dirichlet scalar in the curved bulk corre-
sponds to the Dirichlet scalar in a flat spacetime. However,
for the case of a Neumann scalar the flat spacetime counter-
part is aRobin scalarwith āj = (−1)j−1(D−1)σ′(zj)/2 and
b̄j = 1.TheCasimir effectwith boundary conditions (10) on
two parallel plates on a Minkowski spacetime background
is investigated in [29] for a scalar field with a general con-
formal coupling parameter. In the case of a conformally
coupled scalar the corresponding regularized VEV’s for
the energy-momentum tensor are uniform in the region
between the plates and have the form

〈
T̄µ

ν [ηαβ ]
〉
ren (12)

= − JD(B1, B2)
2DπD/2aD+1Γ (D/2 + 1)

diag(1, 1, . . . , 1,−D) ,

z1 < z < z2 ,

where

JD(B1, B2) = p.v.
∫ ∞

0

tDdt
(B1t−1)(B2t−1)
(B1t+1)(B2t+1) e2t − 1

, (13)

and we use the notation

Bj =
b̄j
āja

, j = 1, 2 , a = z2 − z1 . (14)

For the Dirichlet and Neumann scalars B1 = B2 = 0 and
B1 = B2 = ∞ respectively, and one has

JD(0, 0) = JD(∞,∞) =
Γ (D + 1)

2D+1 ζR(D + 1) , (15)

with the Riemann zeta function ζR(s). Note that in the
regions z < z1 and z > z2 the Casimir densities vanish [29]:

〈
T̄µ

ν [ηαβ ]
〉
ren = 0 , z < z1 , z > z2 . (16)

This can also be obtained directly from (12) taking the
limits z1 → −∞ or z2 → +∞.

The vacuum energy-momentum tensor on a curved
background (2) is obtained by the standard transforma-
tion law between conformally related problems (see, for
instance, [36]) and has the form

〈Tµ
ν [gαβ ]〉ren = 〈Tµ

ν [gαβ ]〉(0)ren + 〈Tµ
ν [gαβ ]〉(b)ren . (17)

Here the first term on the right is the vacuum energy-
momentum tensor for the situation without boundaries
(gravitational part), and the second one is due to the pres-
ence of boundaries. As the quantum field is conformally
coupled and the background spacetime is conformally flat
the gravitational part of the energy-momentum tensor is
completely determined by the trace anomaly and is related
to the divergent part of the corresponding effective action
by the relation [36]

〈Tµ
ν [gαβ ]〉(0)ren = 2gµσ(x)

δ
δgνσ(x)

Wdiv[gαβ ] . (18)

Note that in an odd number of spacetime dimensions the
conformal anomaly is absent and the corresponding grav-
itational part vanishes:

〈Tµ
ν [gαβ ]〉(0)ren = 0 , for even D . (19)

The boundary part in (17) is related to the corresponding
flat spacetime counterpart (12) and (16) by the relation [36]

〈Tµ
ν [gαβ ]〉(b)ren =

1√|g| 〈T̄
µ
ν [ηαβ ]〉ren . (20)

By taking into account (12) we therefore obtain

〈Tµ
ν [gαβ ]〉(b)ren (21)

= − e(D+1)σ(z)JD(B1, B2)
2DπD/2aD+1Γ (D/2 + 1)

diag(1, 1, . . . , 1,−D) ,

for z1 < z < z2, and

〈Tµ
ν [gαβ ]〉(b)ren = 0, for z < z1, z > z2 . (22)

In (21) the constants Bj are related to the Robin coeffi-
cients in the boundary condition (4) by the formulae (14)
and (11) and are functions of zj . In particular, for Neumann
boundary conditions B(N)

j = 2(−1)j−1/[a(D − 1)σ′(zj)].

3 Surface energy tensor and branes tension

The total bulk vacuum energy per unit physical hypersur-
face on the brane at z = zj is obtained by integrating over
the region between the plates:

E
(b)
j = eDσ(zj)

∫ z2

z1

〈T 0
0 〉(b)rene−(D+1)σ(z)dz

= − JD(B1, B2)eDσ(zj)

2DπD/2Γ (D/2 + 1)aD
; (23)
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this result differs from the total Casimir energy per unit
volume, and the reason for this difference should be the
existence of an additional surface energy contribution to
the volume energy. The corresponding energy density is
defined by the relation [29]

T
(surf)
00 = − 4ξ − 1

2
δ(z; ∂M)ϕ∂zϕ , (24)

located on the boundaries z = zj , j = 1, 2, where now

δ(z; ∂M) = δ(z − z2 − 0) − δ(z − z1 + 0) , (25)

where δ(z − zj ± 0) is a one sided δ-distribution. In the
general case (general coupling), the stress-energy tensor
diverges close to the branes. This would also be expected
in the conformal case if the branes are curved [34]. But in
our case from the above formula it follows that the surface
term is zero for Dirichlet or Neumann boundary conditions
(as the factors ϕ or ∂zϕ would then vanish) but yields a
non-vanishing contribution for Robin boundary conditions.
The corresponding VEV can be evaluated by the standard
method explained in [29]. This leads to the formula

〈0
∣∣∣T (surf)

00

∣∣∣ 0〉 (26)

=
4ξ − 1

2
δ(z; ∂M) (∂z〈0 |ϕ(z)ϕ(z′)| 0〉) |z′=z ,

which provides the energy density on the plates themselves.
The integrated surface energy per unit area is given by

ε(surf)
c =

1
a

∫ z2

z1

dz 〈0
∣∣∣T (surf)

00

∣∣∣ 0〉 , (27)

where a = z2 − z1. After regularization for the surface
energy per unit area one obtains

Ē(surf) = aε(surf)
c =

2∑
j=1

E(s)(surf)(βj) − aD(4ξ − 1)ε(2)c ,

(28)
with ε(2)c defined as in following notation:

ε(2)c =
B1 +B2

2DπD/2aD+1Γ
(
1 + D

2

)

×p.v.
∫ ∞

0
dt (29)

× tD(1 −B1B2t
2)

(1 −B1t)2(1 −B2t)2 e2t − (1 −B2
1t

2)(1 −B2
2t

2)
.

For Dirichlet (B1 = B2 = 0) and Neumann (B1 = B2 =
∞) scalars this term vanishes. Note that, as it follows
from (28), the quantity ε(2)c is the additional (to a single
plate) surface energy per unit volume in the case of the
conformally coupled scalar field.

As follows from (27), in our conformally curved back-
ground the surface energy per unit area located on the
branes is given by

E
(surf)
j = eDσ(zj)Ē(surf) . (30)

As one can see from (28) the vacuum energy per unit
hypersurface on the brane z = zj can contain terms in
the form

∑2
j=1E

(s)(surf)(βj) with constants β1 and β2,
corresponding to the single brane contributions when the
second brane is absent. Adding these terms to the vacuum
energy corresponds to finite renormalization of the tension
on both branes.

4 Casimir surface energy
on the branes in AdS4+1 bulk
and the cosmological constant problem

As an application of the general formulae from the previous
section here we consider the important special case of the
AdS4+1 bulk for which

σ = ln(k4z) = k4y , (31)

with 1/k4 being the AdS curvature radius. AdS space is a
spacetime that has a maximal symmetry and a negative
constant curvature, supported by a negative cosmological
constant. For a 4+1-dimensional AdS space, the curvature
radius is related to the cosmological constant by

k4 =
( −Λ

6

)1/2

. (32)

Now the expressions for the coefficients Bj , j = 1, 2 take
the form

Bj =
bjk4zj

(z2 − z1) [aj + 3(−1)j−1k4bj/2]
. (33)

Note that the ratio z2/z1 is related to the proper distance
between the branes ∆y by the formula

z2/z1 = ek4∆y , ∆y = y2 − y1 . (34)

For the surface energy per unit area located on the branes
one has

E
(surf)
j = (k4zj)4Ē(surf) . (35)

Then using (28), (29) and (30) the surface energy per unit
area of branes in the AdS4+1 bulk is given by

E(surf) =
Λ2z4

j

36


 2∑

j=1

E(s)(surf)(βj)

+
B1 +B2

16π2a4Γ (3)
(36)

×p.v.
∫ ∞

0
dt

× t4(1 −B1B2t
2)

(1 −B1t)2(1 −B2t)2e2t − (1 −B2
1t

2)(1 −B2
2t

2)

)
.

For two 3-branes with brane tension σ0, the effective 4-
dimensional cosmological constant as seen by an observer
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on the brane is taken to be zero, in other words, for a certain
choice of Robin coefficients, one could make this vanish,

Λeff = σ0 + E
(surf)
(our brane)(β) −

√
6Λ2

κ2 = 0 , (37)

where κ2 is the 5-dimensional gravitational coupling, andΛ
is the bulk cosmological constant. However, requiring (37)
to cancel is still a fine-tuning. Then in our model the bound-
ary condition is another possibility to make the cosmolog-
ical constant vanish. We could obtain this result only in
our case of interest (massless conformally case with general
Robin boundary condition in odd-dimensional spacetimes).

Now we turn to the brane-world model introduced by
Randall and Sundrum [19] and based on the AdS geom-
etry with one extra dimension. The fifth dimension y is
compactified on an orbifold, S1/Z2 of length ∆y, with
−∆y ≤ y ≤ ∆y. The orbifold fixed points at y = 0
and y = ∆y are the locations of two 3-branes. For the
conformal factor in this model one has σ = k4|y|. The
boundary conditions for the corresponding conformally
coupled bulk scalars have the form (6) with Robin co-
efficients aj/bj = −cjk4, where the constants cj are the
coefficients in the boundary mass term [37]:

m(b)2
ϕ = 2k4 [c1δ(y) + c2δ(y −∆y)] . (38)

Note that herewe consider the general casewhen thebound-
ary masses are different for different branes. Supersymme-
try requires c2 = −c1. The surface energy per unit area
on the branes in the Randall–Sundrum brane-world back-
ground are obtained from (36) with additional factor 1/2.
This factor is related to the fact that now in the normaliza-
tion condition for the eigenfunctions the integration goes
over the region (−∆y,∆y), instead of (0, ∆y). The coef-
ficients Bj in the expression for J4(B1, B2) are given by
the formula

Bj = − e(j−1)k4∆y

ek4∆y − 1
1

cj + (−1)j3/2
. (39)

Recently the energy-momentum tensor in the Randall–
Sundrum brane-world for a bulk scalar with zero mass
terms c1 and c2 is considered in [38]; see also [39].

5 Conclusion

The Casimir effect on two parallel plates in conformally flat
brane-world geometries background due to a conformally
coupled massless scalar field satisfying Robin boundary
conditions on the plates is investigated. In the general case
of Robin boundary conditions formulae are derived for the
vacuum expectation values of the energy-momentum ten-
sor from the corresponding flat spacetime results by using
the conformal properties of the problem. The purely grav-
itational part arises due to the trace anomaly and is zero
for an odd number of spacetime dimensions. In the region
between the branes the boundary induced part for the vac-
uum energy-momentum tensor is given by (21), and the

corresponding total bulk vacuum energy per unit hyper-
surface on the brane has the form (23). Further the surface
energy per unit area located on the branes is given by (30).
As an application of the general formula we have consid-
ered the important special case of the AdS4+1 bulk. In this
specific example we can write the effective cosmological
constant as (37), and for a certain choice of Robin coeffi-
cients, one could make the effective cosmological constant
vanish. However, requiring (37) to cancel is still a fine-
tuning. The surface energy is zero for Dirichlet or Neuman
boundary conditions but yields a non-vanishing contribu-
tion for Robin boundary conditions. Moreover, there is a
region in the space of Robin parameters in which the inter-
action forces between two 3-branes are repulsive for small
distances and are attractive for large distances [21, 39].
This provides a possibility to stabilize the interplate dis-
tance by using the vacuum forces. Then maybe one can
say that this kind of boundary condition is more natural
for cosmology. On the other hand, one can think of many
quantum effects that contribute similarly to the brane ten-
sion, the Casimir energy from fields confined on the brane,
or the Casimir effect from other types of bulk field, which
might play a role in realistic models. An application to the
Randall–Sundrum brane-world model is discussed. In this
model the coefficients in the Robin boundary conditions
on branes are related to the boundary mass terms for the
scalar field under consideration.
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